A Comparative Analysis of Particle Swarm Optimization and K-means Algorithm For Text Clustering Using Nepali Wordnet
نویسندگان
چکیده
The volume of digitized text documents on the web have been increasing rapidly. As there is huge collection of data on the web there is a need for grouping(clustering) the documents into clusters for speedy information retrieval. Clustering of documents is collection of documents into groups such that the documents within each group are similar to each other and not to documents of other groups. Quality of clustering result depends greatly on the representation of text and the clustering algorithm. This paper presents a comparative analysis of three algorithms namely K-means, Particle swarm Optimization (PSO) and hybrid PSO+K-means algorithm for clustering of text documents using WordNet. The common way of representing a text document is bag of terms. The bag of terms representation is often unsatisfactory as it does not exploit the semantics. In this paper, texts are represented in terms of synsets corresponding to a word. Bag of terms data representation of text is thus enriched with synonyms from WordNet. K-means, Particle Swarm Optimization (PSO) and hybrid PSO+K-means algorithms are applied for clustering of text in Nepali language. Experimental evaluation is performed by using intra cluster similarity and inter cluster similarity. .
منابع مشابه
Computational Intelligence Methods for Clustering of Sense Tagged Nepali Documents
This paper presents a method using hybridization of self organizing map (SOM ), particle swarm optimization(PSO) and k-means clustering algorithm for document clustering. Document representation is an important step for clustering purposes. The common way of represent a text is bag of words approach. This approach is simple but has two drawbacks viz. synonymy and polysemy which arise because of...
متن کاملFuzzy Particle Swarm Optimization Algorithm for a Supplier Clustering Problem
This paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. During recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions is usually complex and unstructured. In general, many quantitative and qualitative factors, such as quality, price, and fl...
متن کاملA cultural algorithm for data clustering
Clustering is a widespread data analysis and data mining technique in many fields of study such as engineering, medicine, biology and the like. The aim of clustering is to collect data points. In this paper, a Cultural Algorithm (CA) is presented to optimize partition with N objects into K clusters. The CA is one of the effective methods for searching into the problem space in order to find a n...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملSolving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کامل